
Designing Cathodic Protection for Ships

Specialists in corrosion protection since 1989

Cathodic Protection

with ICCP

Korrosionsgruppen AB is a specialist in cathodic corrosion protection for ships, both with sacrificial anodes and impressed current systems (ICCP). We have more than 30 years of experience in the design and delivery of cathodic protection, from small boats to large ships.

The system consists of a control unit, inert MMO anodes, and reference electrodes. The anodes can be linear, elliptical, or circular. Each system is designed to meet the specific requirements of the vessel and its operating environment. With the system, you can control the current flow, providing full control over the corrosion protection, even if the coating is damaged or when the vessel operates in water with varying salinity.

Cathodic protection with sacrificial anodes (galvanic protection) utilizes a spontaneous electrochemical process where anodes of less noble metals such as zinc, aluminum, or magnesium are attached to the protected object, such as a ship's hull. An electric circuit is created between the anode and cathode, causing a current to flow from the anodes to the hull. The hull then becomes the cathode and is protected against corrosion. As the current is emitted from the anodes, they gradually wear out - that is, they sacrifice themselves to protect the hull, hence the name sacrificial anodes.

INPUT

The design of cathodic protection for ships follows the ISO 20313 standard. For the design process, it is important that the client provides drawings and data as the basis. We design for:

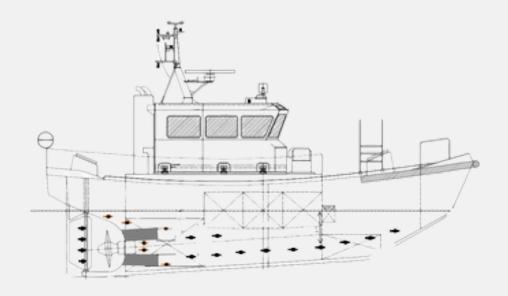
Hull

Sea chests

Rudder

Propeller housing & Propeller

HULL	
Geography and conditions	
Type of vessel	
Zone	
Length perpendiculars (PP)	
Width	
Draft	
Hull material	
Type and thickness of paint	
Paint wear	
Desired lifespan	
Desired service interval	



Design

INPUT

RUDDER	
Height	meter
Width	meter
Pleces	st
Paint thickness	micron
RUDDER FLAP	
Flap height	meter
Width	meter
Paint thickness	micron

PROPELLER	%
Dlameter	meter
Pleces	st
PROP. DUCT	
Length	meter
Diameter	meter
Paint thickness	micron
SEA CHEST	
Sea Chest	m2

Design

OUTPUT

The detailed design includes the following steps and results in the following drawings and specifications.

> **Calculation of Current Requirement** System choice and anode types Size of anodes **Drawing of component placement Detail and installation drawings Material specifications** Maintenance plan and description **Protection potentials/zones**

Standard documentation includes a drawing showing the placement of anodes, rectifiers, and reference electrodes (if applicable), along with explanatory texts and calculation data. Drawings of anodes, etc., are included.

We offer fixed prices for design based on the size of the hull, sea chest, or propeller. The standard documentation package includes basic drawings, but more detailed documentation can be provided for an additional fee.

The Value

Increased safety

Prevents damage

Prevents weakening in structures

Longer technical lifespan

Extends the life of the structure Reduces maintenance needs

Economic savings

Lower maintenance costs Fewer downtimes due to repairs

Reduced environmental impact

Chemical-free corrosion protection Reduced material and resource consumption

